Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Àý»è ¹× ÀûÃþ °¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ 3º» °íÁ¤¼º ±¹¼ÒÀÇÄ¡ÀÇ º¯¿¬ ¹× ³»¸é ÀûÇÕµµ¿¡ °üÇÑ ¿¬±¸

Marginal and internal discrepancy of 3-unit fixed dental prostheses fabricated by subtractive and additive manufacturing

´ëÇÑÄ¡°úº¸Ã¶ÇÐȸÁö 2020³â 58±Ç 1È£ p.7 ~ 13
ÃÖÀç¿ø,
¼Ò¼Ó »ó¼¼Á¤º¸
ÃÖÀç¿ø ( Choi Jae-Won ) - ºÎ»ê´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç

Abstract

¸ñÀû: º» ¿¬±¸ÀÇ ¸ñÀûÀº Àý»è °¡°ø¹ý ¹× ÀûÃþ °¡°ø¹ý¿¡ ÀÇÇØ Á¦ÀÛµÈ 3º» °íÁ¤¼º ±¹¼ÒÀÇÄ¡ÀÇ º¯¿¬ ¹× ³»¸é ÀûÇÕµµ¸¦ ºñ±³ÇÏ´Â °ÍÀÌ´Ù.

Àç·á ¹× ¹æ¹ý: »ó¾Ç ÁÂÃø Á¦2¼Ò±¸Ä¡°¡ »ó½ÇµÈ 3º» °íÁ¤¼º ±¹¼ÒÀÇÄ¡ Áö´ëÄ¡¸¦ Á¦ÀÛÇÏ°í(ÁÖ¸ðÇü), ±¸°­ ½ºÄ³³Ê¸¦ ÀÌ¿ëÇØ ÁÖ¸ðÇü ½ºÄµ µ¥ÀÌÅ͸¦ ¾ò¾ú´Ù. 3º» °íÁ¤¼º º¸Ã¶¹°Àº ´ÙÀ½°ú °°Àº 3°¡Áö ¹æ¹ýÀ¸·Î Á¦ÀÛÇÏ¿´´Ù: Milled 3-unit fixed dental prostheses (FDP) (MIL±º), digital light processing (DLP) 3D printed 3-unit FDP (D3P±º), stereolithography apparatus (SLA) 3D printed 3-unit FDP (S3P±º). º¸Ã¶¹°ÀÇ º¯¿¬ ¹× ³»¸é ÀûÇÕµµ¿Í ³»¸é Á¤¹Ðµµ Æò°¡Çϱâ À§ÇØ °¢°¢ triple-scan protocol°ú ÄÞºñ³×ÀÌ¼Ç ¼ö½ÄÀ» »ç¿ëÇÏ¿© ½ºÄµ µ¥ÀÌÅ͸¦ ÁßøÇÏ¿´´Ù. 3Â÷¿ø ºÐ¼® ÇÁ·Î±×·¥(Geomagic control X)À» »ç¿ëÇÏ¿© root mean square (RMS) °ª°ú color difference map ÅëÇØ Á¤·® ¹× Á¤¼º ºÐ¼® ½ÃÇàÇÏ¿´´Ù. Kruskal-Wallis test (¥á = .05)¿Í Mann-Whitney U test ¹× Bonferroni correction (¥á = .05/3 = .017)À» ÀÌ¿ëÇÏ¿© Åë°è ºÐ¼®ÇÏ¿´´Ù.

°á°ú: S3P±ºÀÇ º¯¿¬ ÀûÇÕµµ´Â MIL±º°ú D3P±º¿¡ ºñÇØ ¿ì¼öÇÏ¿´À¸¸ç, MIL±º°ú D3P±ºÀº ºñ½ÁÇÑ ¼öÁØÀ» º¸¿´´Ù. D3P±º°ú S3P±ºÀº MIL±º¿¡ ºñÇØ »ó´ëÀûÀ¸·Î ¿ì¼öÇÑ ³»¸é ÀûÇÕµµ¸¦ º¸¿´À¸¸ç, D3P±º°ú S3P±º »çÀÌ¿¡´Â À¯ÀÇÇÑ Â÷ÀÌ°¡ ¾ø¾ú´Ù. ÇÑÆí, MIL±º, S3P±º, ±×¸®°í D3P±º ¼øÀ¸·Î ¿ì¼öÇÑ Á¤¹Ðµµ¸¦ º¸¿´´Ù.

°á·Ð: º» ¿¬±¸ÀÇ ÇÑ°è ³»¿¡¼­ ÀûÃþ °¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ 3º» °íÁ¤¼º º¸Ã¶¹°Àº Àý»è °¡°ø¹ýÀ¸·Î Á¦ÀÛµÈ 3º» °íÁ¤¼º º¸Ã¶¹°¿¡ ºñÇØ ¿ì¼öÇÑ º¯¿¬ ¹× ³»¸é ÀûÇÕµµ¸¦ º¸ÀÎ ¹Ý¸é Á¤¹Ðµµ´Â ¶³¾îÁö´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù.

Purpose: This study was to evaluate marginal and internal discrepancy of 3-unit fixed dental prostheses (FDP) fabricated by subtractive manufacturing and additive manufacturing.

Materials and methods: 3-unit bridge abutments without the maxillary left second premolar were prepared (reference model) and the reference model scan data was obtained using an intraoral scanner. 3-unit fixed dental prostheses were fabricated in the following three ways: Milled 3-unit FDP (MIL), digital light processing (DLP) 3D printed 3-unit FDP (D3P), stereolithography apparatus (SLA) 3D printed 3-unit FDP (S3P). To evaluate the marginal/internal discrepancy and precision of the prosthesis, scan data were superimposed by the triple-scan protocol and the combinations calculator, respectively. Quantitative and qualitative analysis was performed using root mean square (RMS) value and color difference map in 3D analysis program (Geomagic control X). Statistical analysis was performed using the Kruskal-Wallis test (¥á=.05), Mann-Whitney U test and Bonferroni correction (¥á=.05/3=.017).

Results: The marginal discrepancy of S3P group was superior to MIL and D3P groups, and MIL and D3P groups were similar. The D3P and S3P groups showed better internal discrepancy than the MIL group, and there was no significant difference between the D3P and S3P groups. The precision was excellent in the order of MIL, S3P, and D3P groups.

Conclusion: Within the limitation of this study, the 3-unit fixed dental prostheses fabricated by additive manufacturing showed better marginal and internal discrepancy than the those of fabricated by subtractive manufacturing, but the precision was poor.

Å°¿öµå

ÀûÃþ °¡°ø; ³»¸éÀûÇÕµµ; º¯¿¬ÀûÇÕµµ; Á¤¹Ðµµ; Àý»è °¡°ø
Additive manufacturing; Internal discrepancy; Marginal discrepancy; Precision; Subtractive manufacturing

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

  

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed